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Abstract—Infrastructure failures have severe consequences
which often have a negative impact on the society and the
economy. In this paper, we propose a machine learning model to
assist in risk management to minimise the cost of infrastructure
maintenance. Due to the vast volume and complexity of
infrastructure datasets, such problem is often computationally
expensive to compute. A Bayesian nonparametric approach
has been selected for this problem, as it is highly scalable.
We propose a two-stage approach to model failures, such as
water pipe failures. The first stage uses an Infinite Gamma-
Poisson Mixture Model to group water pipes with similar
characteristics together based on the number of failures. The
second stage uses the groups created in the first stage as an
input to the Hierarchical Beta Process (HBP) to rank water
pipes based on their probability of failure. The proposed
method is applied to a metropolitan water supply network
of a major city. The experiment results have shown that
the proposed approach is able to adapt to the complexity
of the large multivariate dataset and there is a double-digit
improvement from the grouping created by domain experts.
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I. INTRODUCTION

Infrastructure provides the fundamental systems required
for a city to function. Maintaining a city’s infrastructure
often requires a large amount of financial planning and risk
management. Machine learning models are often developed
to assist companies managing infrastructure by modelling
the failure characteristics of infrastructure networks such as
water supply networks, sewage, electric grids and telecom-
munications. Due to the vast size of these networks, there
is a huge amount of data collected from the intrinsic
attributes of the infrastructure network and the external
environmental factors. The models developed must be able
to model large datasets as these infrastructures can span
thousands of kilometres. This paper proposes a Bayesian
nonparametric approach to predict the failure characteristics
of large infrastructure networks. Bayesian nonparametric
approaches in general are highly scalable models which can
adapt to the complex structure of the dataset.

A water supply network has been selected as a case study
for the proposed approach. Water supply network is a key

infrastructure that is responsible for distributing water re-
sources. Water pipe failures lead to disastrous consequences
which often have a significant impact on the economy and
society. Statistical models have been developed to assist
in the risk management for the water pipe network. As
it is impractical to manually inspect the entire water pipe
network, the model is developed to identify water pipes
with a higher risk of failure and prioritise them for manual
inspection. The pipes which are not considered to be a high
risk will only be renewed reactively.

There have been two main areas to study water pipe
failure prediction. These include physical modelling and
statistical models. Physical modelling provides a failure
prediction by modelling the deterioration process of the
water pipes by using factors such as corrosion status index,
pipe-soil interaction and hydraulic characteristics modelling.
However, for big datasets, physical modellings often have
limitations as it may be impractical to collect all physical
factors.

Machine learning models are much more adaptable to
large datasets as they model the failure behaviour using
historical water pipe failure records [1]. The models consider
both intrinsic water pipe features and external environmental
factors together to make the best prediction. The model
assumes a similar failure pattern which have appeared in the
past are likely to reappear again in the future. We propose
a Bayesian nonparametric approach to model the failure
patterns of the water supply network dataset. Bayesian
nonparametric models have the ability to scale to large
datasets as the parameters of the model grow as the size
of the dataset increases. The proposed approach consists of
two stages. The first stage uses the Infinite Gamma-Poisson
Mixture Model to generate an index for groups of pipes
with similar failure characteristics. The second stage uses
the groups generated in the first stage as an input to the
Hierarchical Beta Process (HBP) [2].

It should be noted that the dataset for water pipe failure is
extremely large and consists of three large datasets, the water
pipe network data, the environmental factors and the water
pipe failure data. The water pipe network data contains all
the water pipe intrinsic features such as the material, the year



it is laid and diameter of the pipe. The environmental factors
include the external factors which may have an effect on
the pipe failure, such as soil corrosiveness and tree canopy
coverage. The water pipe failure data is a time series data
which shows records of the date when a water pipe failure
had occurred. Given the size of the dataset, it is difficult
for traditional modelling techniques to make accurate water
pipe failure predictions.

It is also worth noting that the water pipe data is very
sparse. There have been very few failures recorded during its
observation period, therefore making traditional data mining
techniques unable to make accurate predictions as they have
a tendency to overfit the dataset. By grouping the water
pipes with similar failure characteristics together, data can
be shared between similar pipes for training to improve the
performance of the model.

This paper builds on previous research in Li et al. [1] on
Hierarchical Beta Process (HBP). HBP requires the water
pipe grouping to be predetermined by domain experts based
on the failure rate. However, it may be difficult to create
such grouping for large multivariate datasets such as the
water pipe network. Our contribution in this paper includes
developing a multi-stage approach for water pipe failure
prediction, by using the Infinite Gamma-Poisson Mixture
Model to assign a group index to each pipe. The proposed
method has been applied to three metropolitan areas. The
performance of the model has shown to produce double-digit
improvement compared to the recommendation provided by
domain experts.

The following sections presented in this paper include,
section II, a discussion of the related work. This is then
followed by section III, outlines the proposed approach,
where the Infinite Gamma-Poisson Mixture Model and the
Hierarchical Beta Process is introduced. Then section IV,
presents the application to water pipe failure prediction and
finally section V draws the conclusion to this paper.

II. RELATED WORK

The related work covers two main areas, the first out-
lines the related work in water pipe failure prediction in
section II-A, the second explains the related work required
to develop the proposed approach in section II-B on Dirichlet
process and mixture models and section II-C on block
models.

A. Water Pipe Failure Prediction

There have been a number of models proposed to assist
in risk management for water pipe failure prediction. In the
earliest of work, physical modelling which considers a va-
riety of physical factors such as corrosion, the deterioration
process of the water pipes and the pipe-soil interaction have
been modelled to find the relationship between the pipes
age and the pipe’s failure rate. There have been a number of
time models proposed with comparable performance, some

examples include the time-exponential model [3], time-
power model [4] and the time-linear model [5].

Later on, multivariate probabilistic models were devel-
oped, which made predictions based on intrinsic pipe fea-
tures such as the material used to construct the pipe, the
diameter of the pipe and the year the pipe is laid. One such
approach is a semiparametric model known as the Cox’s
proportional hazards model. The Cox’s model considers a
combination of the time and the pipe attributes to make a
failure prediction. Another example is the Weibull models
and its variants [6], [7]. The Weibull model is a multivariate
technique, it uses a Weibull distribution or a Weibull process
to model the failure behaviour of the water pipes.

More recently, ranking based approaches have been pro-
posed to assist in risk management for water pipe net-
works [8]. Rather than developing a model to predict the
probability for each water pipe failing, each water pipe is
assigned a rank based on the probability of failure. The
ranking based approach has been shown to have superior
performance compared to the time dependent model, Cox’s
model and Weibull model in [1]. The method proposed in
this paper proposes a ranking based approach to model the
failure behaviour using the Hierarchical Beta Process (HBP)
proposed in [1].

B. Dirichlet Process and Mixture Models

Dirichlet processes are a family of stochastic processes
which are often used as a prior for clustering [9]. Dirichlet
processes are highly flexible as they do not require a fixed
number of clusters specified beforehand, but rather learn the
number of clusters based on the dataset. This makes the
Dirichlet process highly scalable to the size of the dataset.
Given these properties, Dirichlet processes are often found in
the foundations of many Bayesian Nonparametric Mixture
Models. Other applications of Dirichlet processes include
document analysis [10], musical similarity analysis [11] and
DNA sequence analysis [12]. The Infinite Gamma-Poisson
Mixture Model uses the Dirichlet process to assign group
index with similar failure characteristics.

C. Block Models

Stochastic block models are a generative model used to
create groups for subsets with similar characteristics [13].
Bayesian nonparametric block models are an extension to
stochastic block models to allow the model to scale to the
size of the dataset. An example of a Bayesian nonparametric
block model is the Infinite Relational Model (IRM) [14].
The IRM is an unsupervised learning technique which is
used to discover systems of related concepts. IRM algorithm
assumes that each entity belongs to a cluster, and then
simultaneously discovers the clusters while clustering the
features using the observed value. It does this by construct-
ing multiple independent Dirichlet processes for grouping
the components. The advantage of IRM over other clustering



techniques is that it does not require a fixed number of
clusters in advance, as the number of clusters grow as the
number as more data is encountered. Applications of block
models include finding system relations [14], link prediction
algorithms [15] and clustering categorical datasets [16].

III. PROPOSED APPROACH

The proposed method is a two-stage approach. The first
step uses the Infinite Gamma-Poisson Mixture Model to
create groups and the second step uses the Hierarchical
Beta Process to rank the pipes based on the probability
of failure. This section will introduce the Hierarchical Beta
Process first in section III-A to provide an understanding of
the requirements of the grouping. This is then followed by
the grouping algorithm, the Infinite Gamma-Poisson Mixture
Model in section III-B.

A. Hierarchical Beta Process

The Hierarchical Beta Process (HBP) is the model se-
lected to make the water pipe failure prediction. This section
first explains the beta process then its extension to the beta-
Bernoulli process, followed by the hierarchical modelling.

1) Beta Process: The beta process was first developed for
applications in survival analysis [17]. It was later generated
for general propose by Thibaux and Jordan [2]. The beta pro-
cess B ∼ BP (c,B0) can be defined as a Lévy process with
a positive random measure B on space Ω. The Lévy process
depends on two parameters, the concentration function c and
the base measure H0. For the special case where c (ω) and
H0 (ω) are constant, they are called the concentration and
the mean parameters respectively. The Lévy measure for a
the beta process for a disjoint infinitesimal partition of Ω
can be generated by equation (1).

H (Bk) ∼ Beta (cH0 (Bk) , c (1−H0 (Bk))) ,

H (ω) =
∑
l

πl (δwl
) ,

πl ∼ Beta (cql, c (1− ql)) ,

(1)

As the beta process is defined over a general space Ω, the
beta process can be used as prior distribution for Bayesian
nonparametric models.

2) beta-Bernoulli Process: The observation of the water
pipe failure can be modelled using a Bernoulli process
Xj ∼ BeP (H) with the measure H , where j represents
the index for each draw. A draw from a Bernoulli process
can be represented by the stick breaking process shown
in equation (2), where δωi corresponds to the same atom
location of H .

Xj (ω) =
∑
l

xl,jδωl
(ω) ,

xl,j ∼ Bernoulli (πl) ,

(2)

The beta process is a conjugate prior of the Bernoulli
process and can be solved highly efficiently. The posterior

distribution of the beta process and Bernoulli process can
be thought of as the probability of failure based on the
individual observations and can be modelled by a beta
process with modified parameters as shown in equation (3).
The full derivation can be found in Hjort [17].

B|X1,...,n ∼ BP

(
c+ n,

c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi

)
, (3)

3) Hierarchical Beta Process: The beta-Bernoulli process
is capable of using the observation to model the probability
of each pipe failing. However, as the water pipe failure data
is very sparse, only very few water pipe failures have been
observed during the life span of the water pipe. Therefore
considering each pipe individually is impractical as the
model will have a tendency to overfit the dataset. The beta-
Bernoulli process is also unable to consider other attributes
which may effect the pipe failure such as the environmental
factors and intrinsic pipe features.

To overcome this issue a hierarchical model has been
constructed by attaching a beta process to the beta-Bernoulli
process to create the Hierarchical Beta Process (HBP). The
HBP groups pipes with similar characteristics together, to
allow information of the pipes to be shared to make better
failure predictions. The algebraic form and graphical model
of HBP is shown in equation (4) and Figure 1a, where ck and
qk are the concentration parameters and the mean parameters
for the group k respectively.

qk ∼ Beta (c0q0, c0 (1− q0)) , k ∈ [1, . . . ,K]

πl ∼ Beta (ckqk, cl (1− qk)) , l ∈ [1, . . . , L]

xl,j ∼ Bernoulli (πl) , j ∈ [1, . . . ,ml]

(4)

The failure probability of each pipe can be calculated by
inferring π. For each pipe l, the pipe belongs to a group
k which are predefined groups defined by domain ex-
perts. However, defining these groups for large multivariate
datasets is quite difficult. Our solution to this problem is
to propose a model in section III-B known as the Infinite
Gamma-Poisson Mixture Model to provide a grouping for
pipes with similar characteristics.

4) Inferencing Method: To solve equation (4), an approx-
imation method proposed in [1] has been used for compu-
tational efficiency. The final approximation to calculate the
parameter qk is given by equation (5).

P
(
qk|ck, {zl} = k, {yl,1,...,m}zl=k

)
∼

Beta

(
c0q0 +

∑
l

sl, c0 (1− q0)
∑
l

m−sl−1∑
t

ck
ck + t

)
(5)

To calculate π, the value can be directly sampled from its
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Figure 1: (a) The graphical model for Hierarchical Beta Pro-
cess. (b) The graphical model for Infinite Gamma-Poisson
Mixture Model.

conditional distribution shown in equation (6).

P (πl|qzl , czl , yl,1,...,m) ∼

Beta

czlqzl +

m∑
j=1

yl,j , czl (1− qzl) +m−
m∑
j=1

yl,j


(6)

B. Flexible Grouping Algorithm

The flexible grouping algorithm has many similarities
with the IRM. However, instead of finding system relations
between features, the algorithm is designed to group com-
ponents with similar properties. The IRM can be seen as
a variant of the Infinite beta-Bernoulli Mixture Model as
it uses the beta-Bernoulli distribution as a base measure
for the Dirichlet Process. Replacing the base measure with
a gamma-Poisson distribution creates the Infinite Gamma-
Poisson Mixture Model. The Infinite Gamma-Poisson Mix-
ture Model groups features with similar observed values into
the same cluster. The model assumes that the observations
are a mixture of random counts which follow a Poisson
distribution.

To define the model, suppose that the observed data x with
n observations. Let zi be the vector of cluster assignment for
xi. The joint distribution of the generative model is given
by equation (7). The equation assumes that each data point
is conditionally independent from the cluster assignment.

P
(
x1, . . . , xN , z

(d)
1 , . . . , z

(d)
K

)
=

N∏
i=1

P
(
x

(d)
i |z

(d)
1 , . . . , z

(d)
N

) K∏
j=1

P
(
z

(d)
j

) (7)

To complete the generative model in equation (7), the equa-
tions for the prior and the likelihood functions are described
in the section III-B1 and section III-B2 respectively.

1) Generating Clusters: To generate the clusters a prob-
ability distribution is assigned to each partition to allow
the clusters to grow. This distribution is chosen from a
Dirichlet process. There are many different perspectives on
the Dirichlet process, the most common including the stick
breaking process, the Chinese Restaurant Process (CRP) and
limiting the number of clusters k to infinity in the Dirichlet
Process Mixture Model (DPMM). This particular approach
uses the CRP perspective on the Dirichlet Process [18]. The
CRP is a “Rich gets richer” model, as the clusters attract
new members in proportion to its size. But there is also
a probability of forming a new cluster which is given by
the concentration parameter γ. The CRP can be expressed
as equation (8), where na is the number of objects already
assigned to the cluster.

P (zi = a|z1, . . . , zi−1) =

{
na

N−1+γ , na > 0
γ

N−1+γ , a is a new cluster
(8)

2) Creating Clusters from Dataset: Clusters can be gen-
erated by fitting a distribution to the dataset. The Poisson
distribution is chosen to model the total number of failures
observed in the dataset. The Gamma distribution is selected
to be the base distribution for the Poisson distribution as it
is a conjugate prior to the Poisson distribution. The Gamma-
Poisson distribution models returns a higher probability for
data points with similar value, therefore creating clusters for
data points with similar values. The Gamma-Poisson distri-
bution can be combined with the CRP by using a DPMM,
hence the complete generative model of the Infinite Gamma-
Poisson Mixture Model is expressed as equations (9). The
graphical model can also be seen in Figure 1b.

z(d)
n ∼ CRP (γ) ,

λk(1),...,k(D) ∼ Gamma (α, β) ,

xn ∼ Poisson
(
λ
z
(1)
n ,...,z

(D)
n

)
,

(9)

Where, d ∈ [1 . . . D], n ∈ [1 . . . N ] and k(d) ∈[
1, . . . ,K(d)

]
. The parameter λ can be seen as the average

value over the each cluster. The average value of each cluster
λ is used as an input parameter for the Poisson distribution
which models the distribution of values for each cluster.

3) Inferencing Algorithm: As the solution for the joint
distribution in equation (7) is not tractable analytically, a
Markov Chain Monte Carlo (MCMC) approach is taken
to approximate the solution [19]. As all conditional dis-
tributions can be calculated analytically, a Gibbs sampling
method is the chosen inferencing algorithm. Gibbs sampling
allows variables to be repeatedly updated one-by-one until
the solution has reached convergence.



The conditional probability of the likelihood function
P (xi|z) in equation (7) can be computed analytically as
conjugate priors have been used on λ. The derivation of the
analytical solution is shown in equation (10), where X̄ is
the mean value of the dataset X and N is the number of
data points.

P (xi|z) =

∫
P (X|z, λ)P (λ) dλ

=

∫ N∏
i=1

P (xi|z, λ)P (λ) dλ

=
βαΓ

(
X̄N + α

)
Γ (α) (N + β)

X̄N+α

[
1∏N

i=1 xi!

] (10)

The conditional probability to assign a data point to each
cluster for each Gibbs step is given by equation (11).

P (z = a|xi) ∝ P (xi|z = a)P (zi = a|z1, . . . , zi−1) (11)

The conditional probability distribution for the cluster
assignment is calculated for each data point. The cluster
assignment is picked using a multinomial. This is repeated
until the solution for the cluster assignment has converged.
The full Gibbs sampling algorithm is outlined in Figure 2.

Input: dataset X , hyper-parameter γ, number of iterations
T
Output: Group index Z
Start Gibbs sampling
for t = 1, . . . , T do

Iterate through all data points
for n = 1, . . . , N do

Remove current data point from cluster
Draw new value using multinomial from equa-
tion (11)
Assign data point to new cluster

end for
end for

Figure 2: The Gibbs sampling algorithm for the Infinite
Gamma-Poisson Mixture Model.

4) Grouping for Multivariate Datasets: The Infinite
Gamma-Poisson Mixture Model shares many similarities
with IRM, many of the properties which are applies to IRM
also applies to Infinite Gamma-Poisson Mixture Model. IRM
considers each dimension independently, then merges the
relations together by considering the number of unique com-
binations. The same property can be applied to the Infinite
Gamma-Poisson Mixture Model. The group index can be
calculate for each dimension and later merged together by
considering the number of unique combinations. This makes
the Infinite Gamma-Poisson Mixture Model highly scalable
to the size of the dataset.

Due to the high dimensional dataset, we consider the
following toy example as a scenario to visualise group index

generated by the Infinite Gamma-Poison Mixture Model. A
water pipe network data, with the laid year and the diameter
are features that have been identified to be factors which may
effect the failure rate. The failure rate along with each of
the feature combinations are tabulated in Table I.

Table I: Toy dataset to demonstrate the grouping generated
by the Infinite Gamma-Possion Mixture Model.

Unique Group ID No. Pipes Laid Year Size[mm] No. Failure
1 100 2001 500 2
2 100 2006 500 3
3 100 2005 500 10
4 100 2003 200 2
5 100 2002 200 11
6 100 2004 200 10
7 100 2003 400 7
8 100 2002 400 16
9 100 2005 400 15

10 100 2001 300 6
11 100 2004 300 17
12 100 2003 100 8
13 100 2006 100 6
14 100 2004 100 16

The Infinite Gamma-Poisson Mixture Model considers
each of the features individually. That is, the model proposes
a group index for the laid year and the size independently.
Then the unique combinations for each group index for each
feature is assigned as the final group index for each group.
The grouping generated is tabulated in Table II. It can be
seen in the final grouping, that pipes with similar failure
counts are placed within the same group. For instance,
group 1 has failure counts ranging from 2-3, group 2 has
failure counts ranging from 10-11, group 3 has failure counts
ranging from 6-8 and group 4 has failure counts ranging
from 15-16.

Table II: The group assignment generated by the Infinite
Gamma-Poisson Mixture Model

Laid Year Pipe Size Combined
ID Index ID Index Failures Index
1 1 1 1 2 1
2 1 2 1 3 1
3 2 3 1 10 2
4 1 4 1 2 1
5 2 5 1 11 2
6 2 6 1 10 2
7 1 7 2 7 3
8 2 8 2 16 4
9 2 9 2 15 4

10 1 10 2 6 3
11 2 11 2 17 4
12 1 12 2 8 3
13 1 13 2 6 3
14 2 14 2 16 4

A visual representation of this table is shown in Figure 3.
Figure 3a shows that the grouping generated by the Infinite
Gamma-Poisson Mixture Model is complex and cannot be



(a) (b)

Figure 3: The results from the Infinite Gamma-Poisson Mixture Model for the toy dataset. The colour of the dot represents
a group with similar failure characteristics. (a) Shows the results with axis in numerical order. (b) Shows the results with
the axis reordered so that the groups with similar failure characteristics are together.

separated by a simple boundary. However, these groups gen-
erated are not random, to better visualise how the grouping
is generated by the Infinite Gamma-Poisson Mixture Model,
the axes in Figure 3b are reordered so that groups of pipes
with similar number of failures are grouped together. After
reordering the axes, a vertical line and a horizontal line can
be drawn to separate each group.

As each feature is treated independently, the complexity
does not increase as more features are added to the model.
The model is also able to group in complexity as the number
of data points increases, with these two properties, this
makes the group assignment generated by Infinite Gamma-
Poisson Mixture Model highly scalable to the size of the
dataset.

IV. APPLICATION TO WATER PIPE FAILURE PREDICTION

This section applies the proposed approach to water
pipe failure prediction. This section first outlines the data
collected in section IV-A. This is then followed by the
prediction results which are discussed in section IV-B.

A. Data Collection

Three metropolitan areas are selected for the experiment.
These regions have been selected to represent a range of
metropolitan areas: region A represents a high population
density area, region B represents a medium population den-
sity area and region C represents a low population density
area. The details of these regions are tabulated in Table III.

For the dataset collected for the three metropolitan areas,
the pipes are laid between years 1884 - 2011. These pipes are
often split into two main categories, reticulation water main
(RWM) and critical water main (CWM). The categories of
these pipes are defined using the pipe diameter. Pipes which
have a diameter less than 300 millimetres are categorised

Table III: Details of the metropolitan areas for each water
supply network

Region Area[km2] Pop. Pop. Density[per km2]
Region A 25 205 000 8 200
Region B 85 230 000 2 706
Region C 685 210 000 307

as RWM, while pipes with a diameter greater or equal to
300 millimetres are categorised to be CWM. The ratio of
these pipes for each region is summarised in Table IV. As
the role of RWM and CWM is different, it is expected that
the failure behaviour of RWM and CWM is also different.
Therefore RWM and CWM are considered separately. This
particular study will focus on the RWM.

Table IV: Summary of pipe network and pipe failure data

Region Type No. Pipes No. Failures Total Length[m]

Region A RWM 12 866 1 586 571 966
CWM 1 945 131 116 938

Region B RWM 9 687 2 702 388 262
CWM 1 000 98 127 060

Region C RWM 15 951 4 249 1 005 346
CWM 2 050 172 209 495

B. Prediction Results

The prediction results for HBP have used grouping which
have been specified by domain experts. The grouping spec-
ified by domain experts attempts to group water pipes
with similar failure rates together. The proposed approach
is labelled as Flexible Grouping Hierarchical Beta Pro-
cess (FGHBP). Domain experts have provided grouping
approaches for 3 different features. These include the year
the pipe is laid, the diameter of the pipe and the material
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Figure 4: Comparisons of methods for Region A. (a) Pipe Diameter (size), (b) year the pipe is laid, (c) material used to
manufacture the pipe.

(a) (b) (c)

Figure 5: Comparisons of methods for Region B. (a) Pipe Diameter (size), (b) year the pipe is laid, (c) material used to
manufacture the pipe.

(a) (b) (c)

Figure 6: Comparisons of methods for Region C. (a) Pipe Diameter (size), (b) year the pipe is laid, (c) material used to
manufacture the pipe.

Table V: A comparison of results for each region using Area Under Curve (AUC).

Region A Region B Region C
Material Year Size Material Year Size Material Year Size

HBP 67.84% 64.81% 66.72% 60.43% 60.57% 60.34% 68.53% 67.14% 62.57%
FGHBP 79.87% 73.62% 77.66% 73.53% 71.08% 75.11% 79.34% 72.95% 72.26%

used to construct the pipe. All 3 grouping approaches have
been compared with the proposed approach.

The performance of the model for each region is shown
in Figure 4, Figure 5 and Figure 6. The horizontal axis
represents the cumulative length of the inspected pipes as a
percentage. The vertical axis shows the percentage of failure
detected for each region in 2012. A model has a better

performance if it can detect more failures at a particular
length with respect to the percentage of length inspected. To
provide a quantitative comparison between these results Area
Under Curve (AUC) is calculated for each model. These
results are shown in Table V.

The results have shown that the proposed approach have
improve the performance of the failure prediction signifi-



cantly. The HBP uses water pipes with similar failure be-
haviour to predict the likelihood of a water pipe to fail. The
Infinite Gamma-Poisson Mixture Model is able to provide
a higher quality grouping compared to the domain experts,
thus leading to the higher performance in failure prediction
across all regions.

V. CONCLUSION

This paper has proposed a two-stage approach for infras-
tructure failure prediction. Datasets containing infrastructure
information are often extremely large and extremely sparse.
The proposed approach uses a two-stage approach to tackle
this problem. The first stage uses an Infinite Gamma Poisson
Mixture Model to group water pipes with similar failure
rates. The second stage uses the Hierarchical Beta Process
rank for the water pipe failure prediction. As the models
from both stages are built using a Bayesian nonparametric
framework, the proposed approach is highly scalable to large
datasets.

The proposed approach has been applied to water pipe
failure prediction to demonstrate its ability to scale for
large datasets. The results have shown that the proposed
approach has an increase in performance compare to the
grouping given by domain experts across all regions. Using
the AUC measure, region A has shown to have an increase of
12.03%, region B has shown to increase 14.77% and region
C 10.81%.
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