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Abstract Real-world data sets produce unmanageably large contour trees because of noise. Contour Tree
Simplification (CTS) would remove small scale branches, and maintain essential structure of data. Despite
multiple measures of importance (MOIs) available, conventional CTS approaches often use a single MOI,
which is not enough in evaluating the importance of branches in the CTS. This paper proposes an impor-
tance-driven CTS approach. The proposed approach combines multiple MOIs through the introduction of
various concepts to maximize advantages of each MOI. In the attribute space, various attributes of a branch
are organized in a single space. The concept of the importance triangle is used to evaluate the importance of
a branch by size of the importance triangle. It considers the whole attribute space and gives better evaluation
of importance. Finally, new importance values of branches are compared in the importance space to make
simplification decisions.

Keywords Contour tree simplification � Attribute space � Multi-dimensional � Importance-driven �
Measure of importance � Volume rendering

1 Introduction

Topology has been an important tool for analyzing scalar data and flow fields in visualization. Topological
features of a field are characterized by its critical points. Two data structures are commonly used for
explicitly storing topological features: Morse-Smale (MS) complexes (Edelsbrunner 2001) and (Reeb 1946)
graphs. The MS complex decomposes domain of a function into regions having uniform gradient flow
(Smale 1961). The Reeb graph (Reeb 1946) is a simple structure that summarizes the topology of a Morse
function. It traces components of isosurfaces/contours as they sweep the domain. For functions with simply
connected domains, this graph is also simply connected and called the contour tree (CT). This paper focuses
on the contour tree for storing topological features. The concept of isosurface/contour is used to set up the
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contour tree. The isosurface is defined as follows: Given a field f : R3 ? R, the isosurface of f for an isovalue
h is the inverse image f -1 (h) of the isovalue. The contour tree traces components of isosurfaces as they
sweep the domain. It represents the nesting relationships of connected components of isosurfaces (Carr et al.
2010; Weber et al. 2007). Typically, the contour tree is represented as a list of nodes and a list of arcs.
Pascucci (2004) used an alternative branch decomposition where a branch is defined as a monotone path in
the graph traversing a sequence of nodes with non-decreasing (or non-increasing) value of the scalar field.

The contour tree is vulnerable to noise which adds small scale topological features and causes the
contour tree size to increase dramatically (Carr et al. 2010). This makes it difficult to recognize branches that
correspond to objects of interest, and results in the contour tree being impractical in data analysis and
visualization. As a result, Contour Tree Simplification (CTS) would remove unimportant branches, while
making the size of the tree small enough for the user interaction and maintaining essential structure of the
data. However, despite multiple MOIs available (Carr et al. 2010), conventional approaches still have the
following problems: (1) they often use single measure to evaluate importance of branches. Because various
measures of importance emphasize different features of data sets, it is obvious that single MOI is not enough
in evaluating importance of branches; (2) to determine a region that preserved branches located in the
attribute space, a user has to estimate multiple linear discriminating functions.

In this paper, we propose an importance-driven approach for the CTS. The proposed approach uses
multiple measures through introducing concepts of attribute space, importance triangle, and importance
space into the CTS pipeline. The objective of this work is to deliver a new paradigm of the CTS for making
full use of advantages of multiple MOIs simultaneously and improve the CTS efficiency. The proposed
approach can be generalized to process branches with more than three MOIs. The contributions of the paper
are as follows:

• A concept of attribute space is proposed to organize various attributes of a branch in a single space. As a
result, the importance of various branches can be compared in an importance space during the CTS.

• A concept of importance triangle is presented to evaluate the importance of branches, which can take full
advantages of multiple measures simultaneously.

• A single simplification threshold considers multiple MOIs simultaneously and allows users to
manipulate thresholds more meaningfully and efficiently.

2 Related work

The topology simplification process suppresses insignificant features by removing or canceling pairs of
critical points that are considered unimportant in terms of a specified measure. Carr et al. (2010) simplified
the contour tree with two basic operations: leaf pruning and node reduction. Leaf pruning removes topology
from the field by selecting a leaf node of low importance and removing it. While node reduction eliminates
connectivity regular points from the contour tree, leaving the topology unchanged. The scheme involves
computation of several measures that are used for ranking the ‘‘importance’’ of an arc. The measures used in
the CTS include persistence, volume and hyper volume. However, these measures are used individually in
the CTS process.

Pascucci et al. (2004) presented a multi-resolution data structure––branch decomposition––to represent
contour trees. A priority queue is used to store leaf branches of join tree and split tree during construction of
the contour tree. The priority for each branch in the scheme is the persistence. Pascucci et al. (2007) also
used persistence based simplification to eliminate insignificant saddle-extremum pairs from the Reeb graph.
Takahashi et al. (2004b) simplified the contour tree using persistence of various node patterns. The number
of simplification steps is controlled by a threshold. Besides contour trees, MS complexes are used to store
the topological information of a 3D data set (Smale 1961; Natarajan and Pascucci 2005). The persistence is
used by (Edelsbrunner et al. 2001) for the simplification of MS complexes. It is defined to be the number of
steps of this sweep for which a feature retains its topological uniqueness.

In a word, the previous work on the topology simplification often used various MOIs separately. Because
each MOI has its specific emphasis on data features, it is obvious that previous work did not take full
advantages of each measure. We strongly believe that appropriate integration of various MOIs will produce
a better topology simplification. This paper focuses on effective evaluation on the importance of branches in
the CTS.
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3 Measures of importance

In this paper, we use a priority queue to keep track of branches of the tree with their associated priorities.
The priority of each branch is equal to its importance value. We also use the branch decomposition
(Pascucci 2004) in the CTS pipeline.

3.1 Definition of importance

In the (Merriam-Webster 2010) dictionary, importance is defined as: Importance means a quality or aspect
having great worth or significance. It implies a value judgment of the superior worth or influence of
something or someone. It describes the quality (positive or negative) that renders something desirable or
valuable, and worthy of note.

In this paper, we define importance as follows: Importance suggests an evaluation or judgment of
significance of an object in a data set. It describes the quality that renders an object desirable or valuable,
and worthy of note in visualization. This quality is represented by some measures that evaluate the degree of
an object which draws attention to viewers in visualization. In the CTS, importance is a simplification value
that indicates the branch’s significance. Branches with lower importance are candidates to be removed
during the CTS.

3.2 Evaluation of importance

In the contour tree, each branch corresponds to a region in the data domain. The importance of each region
can be depicted using different measures. These measures are then used to drive the CTS process. The
importance of one object is related to different features of the scalar field, e.g. scalar value, size, position,
and their combinations. The persistence p, volume v and hyper volume hv belong to measures derived from
the data set itself. Persistence is equal to the absolute difference in scalar values of two critical points.
Volume is the voxel count of the region enclosed by the isosurface. Hyper volume is the integral of the
scalar field over the enclosed region.

From the physical point of view, persistence, volume and hyper volume describe the importance of a
branch from different physical aspects. For example, when we think the scalar value of each voxel as the
mass of that voxel, the importance described by hyper volume is based on the mass of the region corre-
sponding to a branch, i.e. what the weight of a branch is. While persistence describes importance based on
the number of steps of the sweep for which a feature retains its topological uniqueness, and volume
describes the importance based on the size of the region corresponding to a branch.

From the importance’s point of view, these measures are different descriptors of importance for a branch.
For example, giving two branches b1 and b2 with same p and v, fmax = 100, fmin = 2, v1 = v2 = 50,
p1 = p2 = 100-2 = 98. There are 49 voxels whose scalar value is 100 and 1 voxel whose scalar value is 2
in b1, while there are 49 voxels whose scalar value is 2 and 1 voxel whose scalar value is 100 in b2. In this
case, we get hv1 = 4,902, hv2 = 198. From this example, we see that persistence and volume cannot decide
hyper volume uniquely. Hyper volume is an independent MOI from the importance’s point of view. So we
treat persistence, volume, and hyper volume as three different MOIs, and make full use of advantages of
each measure in our approach in the CTS pipeline.

Meaningful and important features are not always captured by the notion of persistence. This is also true
for volume and hyper volume. Persistence has the advantage of highlighting high scalar range regions, but it
easily suppresses large objects with limited ranges of voxel intensity. Volume has the power to easily
preserve objects with large spatial extent, but it easily suppresses small spatial extent objects. Hyper volume
may regard high-intensity noise or artifacts as objects of interest. Each MOI does not on its own describe all
relevant features. Various measures need to be combined together to more accurately depict importance of
objects. The contributions of different MOIs for the final importance value I are different, and can be
expressed as: I = g (p, v, hv).

4 Importance-driven contour tree simplification

This section presents an importance-driven approach, which combines multiple MOIs to take their full
advantages in the CTS pipeline. In this paper, the concepts of attribute space, importance triangle, and
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importance space are introduced into the CTS pipeline. Figure 1 shows the process of importance evaluation
in the importance-driven contour tree simplification. Various measures are firstly represented in the attribute
space. Then the importance triangle is used to map multiple MOIs onto one value. The new importance
values of branches are compared in the importance space to make simplification decisions. The details of
each part will be covered in the later subsections.

4.1 Attribute space

We consider three MOIs in the CTS: persistence, volume and hyper volume. The goal of our approach is to
combine three MOIs to evaluate the importance of a branch, trying to keep advantages and minimize
disadvantages of each measure during the CTS. So this problem can be expressed as follows: suppose that
we have N branches in the contour tree, each branch has a property field which stores a 3-dimensional vector
representing three importance measures of p, v, and hv. These N vectors are represented as Mi, i = 1,…,
N. We need to find a mapping which maps a 3-dimensional vector Mi of importance measures onto a scalar
value. The importance measure vector is represented as: Mi = [pi vi hvi]T.

In order to allow to use MOIs with various units together in a single pipeline, this paper introduces an
abstract space––attribute space––into the CTS pipeline. In the attribute space, each MOI is represented with
an axis in the 3D Cartesian coordinate system as shown in Fig. 1a. Importance values on each axis are
represented with a single unit––relative importance. The relative importance is used to show the importance
of one branch relative to the branch with the peak importance value in the contour tree. In this way, although
each MOI has different unit, the abstract level of relative importance evaluates different MOIs using a single
unit. So the relative importance can be used to evaluate the combination of various MOIs in one space. In
the attribute space, a node is used to represent a branch with specific persistence, volume and hyper volume
as shown in Fig. 1a.

4.2 Importance triangle

As mentioned, we need to evaluate a new importance value for each branch based on components of Mi. We
represent Mi in the attribute space as shown in Fig. 1b, where the coordinates of points A, B and C are (pi, 0,
0), (0, vi, 0) and (0, 0, hvi) respectively. A triangle DABC is then set up to represent the vector Mi. In this
way, each vector Mi is mapped to a unique triangle DABC. This triangle is named as importance triangle
(ITri).

In the attribute space, three MOIs form a tetrahedra OABC. The tetrahedra represents the overall
contribution of multiple MOIs for the importance of a branch. This motivates us to get the importance
evaluation of a branch based on multiple MOIs by evaluating properties of the tetrahedra. In the tetrahedra,
every two edges (e.g. OA, OB, and OC in Fig. 1b) form a triangle. Each triangle represents the importance
contributed by two corresponding MOIs of the triangle in the attribute space. Inspired by (Takahashi et al.
2004a) approach of using the product between volume and persistence as a weight for the CTS, this paper
uses the product of each pair of MOIs as the principal importance factor in the evaluation of importance of
the multiple MOIs. Each product corresponds to the double size (area) of the corresponding triangle of the

Fig. 1 The pipeline of importance evaluation in the importance-driven contour tree simplification
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tetrahedra. Because the area of triangles in the tetrahedron OABC has the relation as shown in Eq. 1 (Fitting
2001; Quadrat et al. 2001), we use the area of the triangle DABC as the final value of relative importance in
the CTS:

S2
DABC ¼ S2

DOAB þ S2
DOBC þ S2

DOAC ð1Þ

where S is the area of various triangles. The size (area) of ITri is computed with Eq. 2:
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where Si is the area of ITri of the ith branch. The final importance value of the ith branch Ii is defined to be
equal to Si (Ii = Si). Because Ii is based on the size of ITri, we call this measure of importance as ITri. As
mentioned, branches with small pi, vi and hvi correspond to noise physically in the data space, where Si is
also small according to Eq. 2. Therefore, ITri provides a method to evaluate importance of branches based
on multiple MOIs. Physically, it focuses on applying small importance values to branches with small pi, vi

and hvi, which correspond to noise and will be removed during the CTS.
Furthermore, the products used to evaluate size of triangles of the tetrahedra have obvious physical

meanings. For example, the product of volume and persistence represents the size of the 4D subspace swept
by the corresponding isosurface, which is contained in the entire 4D space spanned by the (x, y, z)-
coordinates and scalar field (Takahashi et al. 2004a). Therefore, the size of the ITri is a physically mean-
ingful measure of importance which combines multiple MOIs in the pipeline.

In general, if the ith branch has n importance measures mij (j = 1,…, n), the importance measure vector
becomes an n-dimensional vector. In this case, the area of ITri used in the case of 3-dimensional measure
vector is extended to the concept of the area of the hypotenuse face (Quadrat et al. 2001) in the case of an n-
dimensional vector. The area of the hypotenuse face is used to evaluate contribution of all measure variables
mij (j = 1,…, n) of the ith branch to the final importance value and computed with Eq. 3:
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After getting the importance value Ii of each branch, importance values of all branches based on the
concept of importance area are compared in one space––the importance space. The concept of importance
space organizes all branches in one space, and allows compare importance of branches based on multiple
measures of importance. In the importance space, a threshold It is used to control the simplification level: a
branch that has larger importance value of Ii than the specified threshold It is removed during the CTS.

4.3 Advantages

This subsection compares ITri with conventional approaches in three aspects: importance value, regions of
preserved branches, and threshold in the importance space.

In the tetrahedron formed from various MOIs as shown in Fig. 1b, if a conventional method, such as the
single measure, is used (Carr et al. 2010), the importance value corresponds to the length of the line of OA,
OB or OC in the attribute space. If weighted summation of various MOIs (as shown in Eq. 4) is used to get
the importance value in the CTS, the final importance value corresponds to the summation of the length of
three lines OD, OE and OF in the attribute space as shown in Fig. 1b.

Ii ¼ kp � pi þ kv � vi þ kh � hvi; ð4Þ

where kp, kv and kh are weighting coefficients. It is obvious that these conventional methods only consider
part of the attribute space in the CTS pipeline. Compared with conventional methods, the final importance
value of our approach corresponds to area of triangles instead of the length of lines. It considers the whole
attribute space and gives better evaluation on the importance of a branch during the CTS.

Figure 2a is a 2D diagram to show the comparison of ITri and persistence as MOIs in the CTS. In this
figure, the red curve represents the threshold It where ITri is used as the MOI in the CTS, and the vertical
blue line represents the threshold pt where persistence p is used as MOI in the CTS. When ITri is used in the
CTS, branch nodes positioned on the top side of the red curve (i.e., the region C and D) are preserved. By
contrast, if persistence is used as a single MOI in the CTS, branch nodes positioned on the right side of the
blue line (i.e., the region A and D) are preserved in the CTS. The difference between ITri and persistence is
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obvious: persistence removes branches in the region C which are considered as branches of interest by ITri,
while preserves branches in the region A which are considered as noise by ITri. Despite persistence of
branches in the region C being smaller than pt, they are possibly branches of interest considering their
corresponding volume and hyper volume. Similarly, despite persistence of branches in the region A being
larger than pt, they are possibly noise considering their corresponding volume and hyper volume. ITri
balances these considerations and simplify the contour tree more effectively. The difference between ITri
and volume or hyper volume in the CTS is similar with that between ITri and persistence.

Figure 2b shows a set of threshold curves with different It in the importance space in a 2D diagram. It is
increased from bottom left to top right in this figure. From these curves we see that persistence, volume and
hyper volume of preserved branches are increased accordingly with the increase of It (we only show
persistence and volume in Fig. 2b in this 2D example). By contrast, if a single measure such as persistence is
used, only persistence of preserved branches is increased with the increase of pt. Even if other measures (e.g.
volume) are zero, branches are still preserved as long as their persistence is larger than pt.

From Fig. 2a, we see that if branches in the region C and D need to be preserved based on conventional
approaches, users have to determine multiple discriminating functions (i.e. multiple thresholds). One
threshold of volume needs to be specified besides the threshold of pt to approximately determine the region
C and D. The determination of multiple thresholds for a given task is often difficult. This determination
process lacks guiding information and is often based on trial-and-error process. On the contrary, ITri only
needs one threshold to determine the region C. It balances contributions of multiple measures for the final
importance value.

5 Results and discussions

We conducted experiments on various data sets to demonstrate the effectiveness and utility of the proposed
approach. Our system was run on Windows XP platform on a Dell machine equipped with 3GiB RAM and
an NVIDIA GeForce 8300GS graphics card.

Figure 3 shows the rendering and topology of the ‘‘fuel’’ data set (see http://www.volvis.org/). The data
set is rendered using volume rendering with the critical points drawn on their original positions, which helps
users to understand the data topology visually (red nodes represent the local maximum points, blue nodes
represent the local minimum points, and green nodes represent the root points in this paper). The corre-
sponding level of the simplified contour tree graph is drawn on the right hand side of the rendered data set.
The contour tree graphs in this paper are drawn based on the Orrery-like arrangement (Pascucci 2004). pt, vt,
hvt and It are thresholds used in the CTS. In this experiment, we set pt, hvt and It be equal in order to
compare effectiveness of various measures. From the comparison, we see that Fig. 3a, c are similar, but

Fig. 2 Comparison of ITri and Conventional Approaches: (a) The comparison of ITri and persistence; (b) A set of threshold
curves of It with different It in a two-dimensional case
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more branches are preserved in Fig. 3a. This is because that hyper volume considers the size of features
besides the scalar value during the evaluation of importance of features. From the hyper volume’s point of
view, a branch will be removed if its hyper volume is small even if its persistence is large. In Fig. 3b,
although volume can preserve some critical points successfully, it cannot remove noise (e.g. the blue point
outside the structure) effectively even if the threshold is larger than that of other measures. In Fig. 3c, d, we
see that the simplification results of two methods are same at the body part because topological subregions
are relatively larger than that at the head of the data, and hyper volume can capture this feature as ITri does
because of larger hyper volume. However, it is clear that the results are completely different at the head part
of the data. Hyper volume cannot capture features at the head part of the object, while ITri can capture these
evenly circularly distributed topological subregions successfully.

For a domain specific case, for example, in a medical data set with tumors inside, tumors often have low
ranges of scalar values relative to surrounding objects. Furthermore, there are also different sizes of tumors.
In order to simplify the contour tree of this kind of data set, users need to preserve branches with small
persistence while considering volume and hyper volume at the same time. Figure 4 presents the rendering of
the ‘‘TumorHead’’ data set (data courtesy of B Terwey, Bremen), where there is a brain tumor pointed out
by A in Fig. 4a. Given the number of preserved branches being same for persistence and ITri after the
simplification, the simplified contour tree is used to generate transfer functions using the approach presented
in (Zhou and Takatsuka 2009). This experiment aims to compare differences of rendering results using
transfer functions based on CTS measures of persistence and ITri. In this experiment, the goal of the CTS is
to preserve the branch corresponding to the tumor of A as shown in Fig. 4a and the tumor B as shown in
Fig. 4b. From the comparison of Fig. 4a, b, we see that both images preserve the tumor structure. However,
differences are obvious: the size of tumor rendered based on persistence is obviously smaller than that of
tumor rendered based on ITri. This is because that the persistence of the tumor is small, some of branches
corresponding to the tumor are removed when persistence is used as the MOI during the CTS.

Fig. 3 Rendering and topology of ‘‘fuel’’ data set. The object on the lower left side in each image is the right view of the
object on the upper left side, and the corresponding contour tree is on the right hand side

Multi-dimensional importance for CTS



From the experiments, we see that the proposed approach can simplify the contour tree meaningfully and
effectively. The utility of our approach is two-fold: as a comprehensive solution for combining multiple
MOIs in the CTS, and as a general effective interface to manipulate thresholds in the CTS. Our approach
provided a complete pipeline for users to organize, display, and simplify the contour tree. It showed
advantages in the CTS process. Another advantage of our approach is that it can be easily extended as a
general scheme to simplify the contour tree with more than three MOIs.

The proposed approach has wide applications in visualization. For example, by using the proposed
approach, the subregions in a data set can be precisely indexed by branches in the contour tree. This is one of
crucial steps in improving effectiveness of topology controlled automation of transfer function generations
in volume rendering (Zhou and Takatsuka 2009). The proposed approach can also be used in visual
representation of topological structures of data sets, such as topological spines (Correa et al. 2011) like
structure of a data set in visual analysis. The simplified contour tree can be used in isosurface extractions,
and guiding exploratory visualization (Carr et al. 2010). It can also be used in the automated image
segmentation (Johansson 2007).

6 Conclusions and future work

This paper presented an importance-driven approach for the CTS. The proposed approach combined
multiple MOIs into a CTS pipeline through the introduction of various concepts. The presented approach
demonstrated advantages in the use of MOIs. We presented three measures in this paper. More MOIs can be
developed to represent features of data sets and combined with the proposed approach. Another possible
direction for the future work is to extend the proposed approach and use it as a general framework to
combine multiple features of data sets in other applications. As a future work, an objective criterion will be
developed to evaluate the proposed approach. For example, a data set can be segmented using a segmen-
tation method. The difference (of volume, hyper volume, etc.) between the subregion indexed by branch and
the corresponding subregion from the segmentation can be measured to show the effectiveness of the CTS
approach.
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