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Abstract: Despite the recognised value of machine learning (ML) techniques 
and high expectation of applying ML techniques within various applications, 
users often find it difficult to effectively apply ML techniques in practice 
because of complicated interfaces between ML algorithms and users. This 
paper presents a work flow of wrapping practical problems into an ML 
framework. The water pipe failure prediction is used as a case study to show 
that the applying process can be divided into various steps: obtain domain data, 
interview with domain experts, clean/pre-process and preview original domain 
data, extract ML features, set up ML models, explain ML results and make 
decisions, as well as make feedback to the system based on decision making.  
In this process, domain experts and ML developers need to collaborate closely 
in order to make this workflow more effective. 
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1 Introduction 

1.1 Problem description 

With the rapid increasing of data from various fields such as biology, finance, medicine, 
and society, users are looking to integrate their ‘Big Data’ and advanced analytics  
into business operations in order to become more analytics-driven in their decision 
making. Such decisions can be integrated in various real world scenarios (e.g., remote 
collaboration in fixing problems (Huang and Alem, 2013). Much of machine learning 
(ML) research is inspired by such expectations. Various ML algorithms offer a large 
number of useful ways to approach those problems that otherwise require cumbersome  
manual solution. Despite the recognised value of ML techniques and high expectation of 
applying ML techniques within various applications, users often find it difficult to 
effectively apply ML techniques in practice because of complicated interfaces between 
ML algorithms and users, such as complex parameter settings and intermediate decisions. 
Because of these complexities, it is very hard to see ML as a general solution for 
widespread applications. As a result, ML is regarded as a large bag of tricks grasped by 
ML experts instead of a universal tool for non-experts. It is one of challenging tasks of 
wrapping practical problems into an ML framework for both domain experts and ML 
developers. Therefore, the investigation of workflow of applying ML to practical 
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problems benefits both domains and ML research fields and helps make ML transparent 
in practical applications. 

Using water pipe failure prediction as an example, water supply networks constitute 
one of the most crucial and valuable urban assets. The combination of growing 
populations and aging pipe networks requires water utilities to develop advanced risk 
management strategies in order to maintain their distribution systems in a financially 
viable way (Li et al., 2014). Especially for critical water mains (generally >300 mm in 
diameter), defining based on the network location (for example, a single trunk line 
connecting distribution areas or under a major road) or size which infers impact potential, 
failure of them typically bring severe consequences due to service interruptions and 
negative economic and social impacts, such as flooding and traffic disruption (Li et al., 
2014). The financial and social costs of reactive repairs in such scenarios amount to more 
than one billion dollars annually in Australia alone. For instance, over the past 10 years, 
Sydney Water has spent around $3.5 million each year on reactive critical water main 
repairs (Whiffin et al., 2013). Currently the critical main network in Sydney Water 
consists of 4700 km, with an average pipe age of 50 years over a geographical area of 
12,700 km2 (Whiffin et al., 2013). From an asset management perspective there are two 
goals for critical mains management (Whiffin et al., 2013):  

• minimise unexpected critical main failure by prioritising timely renewals 

• avoid replacing a pipe too early before the end of its economic life. 

If high-risk pipes can be identified before a failure occurs, it is likely that repairs can be 
completed with minimal service interruption, water loss and negative reputational and 
community impacts. Identification of an accurate predictor measure that indicates 
imminent failure will allow utility companies to take actions to mitigate the failure for a 
lower cost than repairing a full-scale failure. This will contribute to extending the service 
life of pipes that are still in good condition and allow running the mains to an acceptable 
defined risk limit (Whiffin et al., 2013). As the average age of the network increases, 
pipes are easily failed with the decrease of pipe strength. It will become more important 
to accurately predict the risks of pipe failure and provide the right level of pipe 
maintenance and renewal at the right time, according to risks associated with each pipe. 
Such pipe management benefits utility authorities in following ways: 

• increase customer satisfaction by reducing critical main failures and service 
disruption 

• improve the way of pipe management by: 

• doing preventative maintenance rather than reactive repair 

• providing better understanding of the risk factors in each area 

• performing target monitoring programs to collect the right data 

• finding more poor condition pipes with the same level of assessment activity 

• avoiding replacing pipes that still have remaining life. 
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1.2 Information available for problems 

The management authorities of water pipes collect various data on water mains, which 
include geographical information of pipes, failure history, and attributes of pipes. 
Specifically, these data mainly include: 

• geographical and environmental factors: location of pipes, soil types, weather 
conditions and transportation conditions around the pipe area 

• failure history: failure type, failure date, failure times 

• pipe attributes: laid year, size (diameter), length, materials (typically include cement 
mortar lined cast iron, ductile iron or steel, asbestos cement, or plastic), coating types 

• internal pressure. 

Other information such as wall thickness of pipes and cement lining thickness, depth of 
main, photos of pipe sample are also collected. 

1.3 Goals of water pipe failure prediction 

ML is becoming a viable technique to quantify probabilities in practical applications 
including water pipe failure prediction. ML techniques are expected to improve accuracy 
of risk analysis (e.g., pipe failure prediction) and reduce maintenance cost of pipes (e.g., 
better prioritisation criteria). The ultimate goals of water pipe failure prediction utilising 
ML techniques include: 1) provide an assessment of current condition; and 2) predict 
likelihood of pipe failure for given time period. The challenges for water pipe failure 
prediction using ML techniques include two aspects:  

• data assimilation problem:  

• How to assemble relevant information into a composite understanding of pipe 
condition 

• incomplete/missing data.  

• prediction problem:  

• How to translate the understanding into a prediction of pipe failure 

• when and where will a pipe fail under uncertainties. 

2 Conventional workflow on water pipe failure management 

Current tools for water pipe failure management are risk-based approaches. For example, 
Sydney Water sets up a risk matrix based on the quantitative calculations of likelihood of 
failure and consequence (economic) of failure (Kane et al., 2014). The risk categorisation 
is based on best available quantitative information from actual field condition assessment 
and cost data or best quantitative estimates by other means unless field data is 
unavailable. Figure 1 illustrates the typical critical water main decision framework 
utilised (Kane et al., 2014). This framework is a formal decision process that identifies, 
priorities, and recommends critical water mains for condition assessment and/or renewal 
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based on a quantified risk level of the assets. The process includes an initial risk 
assessment based on available information, prioritisation, and progressive refinement  
of the risk assessment through condition assessments and analysis of failure history 
(Kane et al., 2014). 

From this decision framework, it is obvious that risk matrix plays central roles in the 
water pipe failure management. The risk matrix highly depends on likelihood of failures 
of pipes, which is based on different factors such as pipe age, pipe material, past failure 
history, and engineering judgement.  

Figure 1 Dynamic decision support in water pipe failure management (see online version  
for colours) 

 
Source: Kane et al. (2014) 

3 Workflow of applying ML to water pipe failure prediction  

As mentioned, the likelihood of failures of pipes plays significant roles in water pipe 
failure management. Furthermore, ML techniques are powerful in learning probabilities 
based on historical data. However, because of complexities of both water pipe failure 
problems and ML techniques, it is challenging to phrase the water pipe failures as an ML 
framework. Figure 2 illustrates the workflow of phrasing water pipe failures as an ML 
problem in our practice. In this workflow, original domain data are firstly collected from 
customers. Then the interviewing with domain experts is arranged to learn details on 
water pipes, such as what factors affect pipe failures from the domain expert’s view, how 
domain experts predict pipe failures in their routine work. After this stage, because of 
missing information or other reasons, the original domain data are cleaned in order to be 
processed easily by future stages, such as removing records with missing information or 
inputting default values in records with missing information. After cleaning the data,  
we, as ML technique developers, try to get an overview of domain data and learn some 
patterns in the data. Based on the overview of the cleaned data, various data features are 
derived and ML models are developed. To allow users easily understand ML results, 
visualisation of ML results are then presented. The results need to be explained to users 
using domain knowledge. According to the explanation of ML results, decisions are made 
to practice domain actions such as digging out and replacing high risk pipes. From the 
practice actions, significant information can be got such as whether pipes predicted as 
high risk ones are confirmed or violated from actual digging. The information can be 
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used as feedback to the pipeline to improve effectiveness of ML analysis, such as feature 
definition and ML modelling. The following sections present details on each stage of this 
workflow in our practice. 

Figure 2 Workflow of phrasing water pipe failures as an ML framework (see online version  
for colours) 

 

4 Domain data and interviewing with domain experts 

The original domain data got from customers were usually various spread sheets 
recording geographical information, failure history and physical attributes of pipes. Other 
data (e.g., images) were also provided to further understand pipe failures, such as types of 
failures and consequences caused by pipe failures. 

To have better understanding of domain datasets and exact goals that customers want 
to get from data, interviewing with domain experts was actively performed. Domain 
experts explained their considerations of factors that affect pipe failures. For example, 
different soil types (see an example in Figure 3) may affect pipe life expectancies. Pipes 
in casted iron are easily got corrosions. Pipes within busy traffic areas may have high 
failure rates than in other areas. The views from domain experts help to define and 
evaluate data features which are fed to ML models. 

Regarding the water pipe failure prediction, domain experts have various questions 
such as (Kane et al., 2014): 

• How, when, and where will pipes fail within the entire network? 

• How do we assess the condition of the pipe cost effectively? 

• How do we calculate pipe deterioration rates accurately with respect to the pipe 
environment? 

• What is the time-dependent probability of the pipe failure along the pipeline? 

• How do we transfer the new knowledge to the industry for optimal pipe 
management? 
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Figure 3 Different soil types encoded by colours in a region (see online version for colours) 

 

5 Data cleaning and overview of domain data 

The domain data collected from customers are usually not able to be used directly in 
computational analyses programs because of incompleteness, mismatching, noises or 
other reasons. Therefore, pre-processing operations are conducted in order to make the 
data format ready for convenient operations in later stages. For instance, the water pipe 
data usually include main and failure records which indicate the laid pipes and failure 
pipes respectively. To make the data consistently between main and failure records, data 
matching is one of significant operations conducted during pre-processing step. It is 
usually conducted based on pipe ID or location of pipes. 

When finishing cleaning data, data summary and overview need to be conducted in 
order to better understand failure patterns. The data summary includes record summaries 
and visualisations on summaries. For instance, for the main records, the summary 
includes total number and total length of laid pipes as well as percentage of laid pipes that 
are still working. For the failure records, the summary includes total number and total 
length of failure pipes as well as the number of failure pipes that can be matched back to 
the main pipe records. 

The summary may also be visualised in various forms and on maps if geographic 
location information is available. For example, an overview of failure rate by installed 
year as shown in Figure 4 is helpful to understand patterns of pipe failures, where the 
vertical axis is the failure rate measured by failure numbers over 10 years per 100 km, the 
horizontal axis is the installation year. Similarly, the overview of failure rate by other 
pipe attributes (e.g., size, materials) also help understand how those attributes affect pipe 
failures. 
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Figure 4 Overview of failure rate by installed year in region A (see online version for colours) 

 

6 Converting domain data to ML features 

6.1 Factor analysis 

As mentioned, there are lots of attributes/factors that may affect water pipe failures. 
However, not all factors have same contributions to pipe failures. Therefore, the 
estimation of importance of factors is helpful in the selection of data features for ML 
modelling. Given a factor x (e.g., material), the information gain (IG) on pipe failure y 
(y = 1 for a failed pipe, otherwise y = 0) can be determined by: 

( , ) ( ) ( | ),IG x y H x H x y= −  (1) 

where H() and H(|) represent information entropy and conditional entropy respectively. 
For example, as illustrated in Figure 5, the vertical axis represents the information gain  
of various factors. This figure shows that some factors such as laid year, material and 
coating significantly affect pipe failures, while other factors such as size have smaller 
contributions to pipe failures. Based on this evaluation, factors that significantly 
contribute to pipe failures are selected for further analysis in the coming stages. 

Figure 5 Factor analysis in water pipe failure prediction in region A (see online version  
for colours) 
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6.2 Feature definitions 

Feature definition is an important step for ML analysis. It directly affects the 
effectiveness of ML analysis. In water pipe failure prediction, data features used  
for ML analysis are defined based on previous project experience and domain experts’  
feedback. The main features/attributes used in water pipe failure prediction include 
installed years, pipe diameter, pipe material, coating surface, soil and traffic in the area of 
pipes.  

7 ML modelling 

The probability of a pipe failure itself is a random variable dependent on a set of pipe 
physical attributes (e.g., age) as well as related environmental conditions (e.g., soil type). 
Various parametric or semi-parametric models such as the Cox model, Markov model, 
and Weibull model (Ibrahim et al., 2005) have been developed for water pipe failure 
analysis. However, parametric models are usually limited by their fixed model structure 
based on a priori assumptions on the data behaviour and their inability to adaptively 
adjust the model to the complexity of the problem (Li et al., 2014). To address these 
limitations, the use of Bayesian nonparametric learning is proposed to predict water pipe 
condition (Li et al., 2014). Historical water pipe data can be incorporated and the model 
can grow to accommodate future data as necessary. Our work particularly investigated 
hierarchical beta process (HBP) (Li et al., 2014) for sparse incident data to develop an 
efficient approximate inference algorithm. The method can be used to predict the failure 
rate of each individual pipe more accurately by capturing specific failure patterns of 
different water-pipe groups. Compared to existing statistical prediction methods, HBP 
offers a more flexible model structure to accommodate the volume and diversity of 
historical data and are less sensitive to the effects of various noisy factors. It is also 
possible to incorporate spatial relationships among neighbouring pipes to better predict 
infrequent failures (Whiffin et al., 2013). 

In the HBP model as shown in Figure 6, pipes are divided into K groups based on laid 
years and modelled as a HBP. In the top level, hyper parameters, which control across all 
groups of pipes by a beta distribution, are set manually according to domain experts’ 
experience. Then, the mean failure rate (qk) in each group can be generated from the 
distribution. In the middle level, the mean failure rate (πk,i) of each pipe asset is generated 
through another beta distribution with qk as parameter. In the bottom level, the actual 
failures zi,j are generated from a Bernoulli process year by year using πk,i. 

Figure 6 The diagram of HBP model (see online version for colours) 
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8 Visualisation and explanation of ML results 

8.1 Visualisation of ML results 

The analysis results from ML modelling are usually in abstract forms such as 
probabilities. To transform the abstract results into easily understandable representations, 
various visualisations of ML results are conducted at this stage. For the water pipe failure 
prediction, because pipes are associated with geographic locations besides failure risks 
learning from HBP model, pipes are visualised on maps with colour encoded failure 
risks. This visualisation is called as risk map. From the risk map, users can easily get 
answers on pipe failures such as where are the most risky pipes located from the 
visualisation. 

Figure 7 Results of pipe failure prediction using different models (see online version for colours) 

 

8.2 Comparison of ML performance 

Besides the visualisation of ML results, ML results also need to be explained to users 
based on domain knowledge in order to let end users trust ML results and utilise ML 
results for include: why the proposed approach is better than other approaches, why the 
ML results are believable, etc. For example, as illustrated in Figure 7 (Li et al., 2014),  
the x-axis represents the length of condition assessed water pipes starting at the top  
of the list, and the y-axis represents the percentage of actual failures detected from  
those inspections. The right figure is the enlarged version of the circled region  
in the left diagram for the first 1% of all critical water mains. This is because that the 
budget and resources allocable for pipe condition assessment are usually limited,  
each year only a small fraction of the critical water mains can be physically inspected, 
typically around 1% of the whole network length. The comparison shows that 
nonparametric approach (HBP) outperformed traditional model of Weibull (Ibrahim  
et al., 2005) and Cox. 
 
 
 



   

 

   

   
 

   

   

 

   

    Wrapping practical problems into a machine learning framework 201    
 

    
 
 

   

   
 

   

   

 

   

       
 

9 Explanation of ML process 

For a domain expert who may not have expertise in ML or programming, an ML 
algorithm acts as a ‘black-box’, where the user defines parameters and input data for the 
‘black-box’ and gets output from its execution. This ‘black-box’ approach has obvious 
drawbacks: it is difficult for the user to understand the complicated ML models, such as 
what is going on inside the ML models and how to accomplish the learning problem.  
As a result, the user is uncertain about the usefulness of ML results and this affects the 
effectiveness of ML methods. Therefore, ML process needs to be explained in an 
appropriate way in order to make it easily understandable (Zhou and Chen, 2015). 

Research found that providing support for explaining ‘run-time’ behaviour had a 
significantly positive impact on both end users’ effectiveness of debugging and their 
attitude toward the system (Kulesza et al., 2010). Providing explanations has been shown 
to be effective in other domains such as decision making (Dzindolet et al., 2003) and 
recommender systems (Herlocker et al., 2000) where providing explanations led to 
increased trust and acceptance. Commercial applications, such as Amazon’s product 
recommender system or Pandora’s music recommender now integrate explanations into 
their interfaces (Lim et al., 2009). It was also found that why and why not explanations 
lead to improved user understanding, trust, perception, and performance more than 
having no explanations (Stumpf et al., 2007). ML models are also explained by learning 
an interpretable model locally around the prediction, and presenting representative 
individual predictions and their explanations in a non-redundant way (Ribeiro et al., 
2016). Krause et al. (2016) employed interactive visual analytics to help users understand 
how features affect the prediction overall by providing interactive partial dependence 
diagnostics. 

Figure 8 The real-time status update of ML process is presented to users with interactive graphs 
and animations (see online version for colours) 
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This study uses an approach of revealing internal ML states to make end users more 
convincing on ML results from HBP. As shown in Figure 8, the top chart presents the 
status update of qk and the bottom chart presents the status update of πk,i. During ML 
process, the charts are dynamically changed to reveal the internal real-time status update. 
To interact, users can point to any (interact detail) qk in the top chart and the 
corresponding πk,i is presented accordingly in the bottom chart. Compared with directly 
presenting the final prediction of failure rate πk,i, the presentation of qk and πk,i allows 
users learn how the prediction of failure rate of each pipe is approached. As a result, 
users’ convincingness on predictions is increased. With the help of a user study, we found 
that revealing of the internal states of ML process can help to improve easiness of 
understanding the data analysis process, make real-time status update more meaningful, 
and make ML results more convincing. 

10 Decision making and feedback 

After ML processes are explained to domain experts, decisions are made by domain 
experts to take actual actions. For example, in water pipe failure management, domain 
experts make decisions to dig out the most risky pipes and make condition assessment. 
This is the step where ML technologies have actual impact on real-world. 

Because ML results are usually abstract and complicated, how to exploit ML results 
effectively in decision making is challenging. To learn what factors of ML results affect 
decision making and how to measure decision performance with different ML results, we 
proposed that decision making can be measured in order to let users perceive decision 
qualities and decision difficulty levels in real-time (Zhou et al., 2015, 2016). In the 
proposed framework of adaptive measurable decision-making (see Figure 9), when an 
experiment task with certain decision factors (e.g., ML-based decision factors) is exposed 
to users for decision making, task difficulty is measured at the same time with subjective 
ratings and physiological measurements (e.g., GSR, eye-tracker). After the user makes 
decisions, the decision performance is evaluated with the user’s choice and physiological 
measurements. The measured information is then analysed and classifiers for decision 
quality and task difficulty are derived.  

When a new task is coming, users’ workload during decision making is recorded 
using physiological measurements in real-time. The measurements are sent to classifiers 
for difficulty levels and decision quality learned in the experiment task stage. The task 
difficulty level and decision quality from classifiers are exported to users. If users are 
satisfied with the decision performance and decision itself, then the decision making 
process is finished. Otherwise, decision factors are refined (e.g., increase/decrease 
number of certain decision factors) based on the analysis results at the experiment task 
stage to continue a new decision-making session. For example, if the decision difficulty 
level derived from measurements is low, more certain decision factors may be included in 
order to get higher quality decisions. This process is iteratively performed until decisions 
meet performance and difficulty requirements from users. Such framework allows users 
refine decisions adaptively and interact with system more efficiently in human-computer 
interaction (HCI) systems. Zhou et al.’s (2015) study found that various aspects  
 
 
 



   

 

   

   
 

   

   

 

   

    Wrapping practical problems into a machine learning framework 203    
 

    
 
 

   

   
 

   

   

 

   

       
 

of ML results (e.g., type, numbers, and values) affected decision difficulty levels and 
decision qualities. For example, the number of ML-based decision factors significantly 
affected easiness of decision-making process, and more number of ML-based decision 
factors made the decision-making process more difficult. 

Figure 10 illustrates the loop of using adaptive measurable decision-making. In this 
loop, the adaptive measurable decision-making engine is mainly composed of the 
physiological signal processing component, classifiers for decision difficulty and decision 
quality, as well as decision factor adaptation. Raw physiological signals from the user  
are input into the adaptive measurable decision-making engine. The decision difficulty 
levels and decision qualities are derived from signals. If the user is not satisfied with  
the decision difficulty levels and decision qualities, decision factors are refined (e.g., 
add/remove decision factors, change types/values of decision factors) and a new decision 
process is performed based on the updated decision factors until the user is satisfied with 
the decision performance. 

Figure 9 Framework of adaptive measurable decision-making (see online version for colours) 

 

Based on this decision-making study (Zhou et al., 2015), water pipe failure management 
can utilise various factors (e.g., likelihood of failure from ML analysis, economic  
factors) adaptively to refine and get high quality decisions. As mentioned in Section 2, 
decision making in conventional water pipe failure management conducts progressive 
refinement of risk assessment. In ML-based water pipe failure prediction, this action 
provides domain experts the opportunity to check whether the ML prediction is 
confirmed to be true or not. As a result, it provides a ground truth for the prediction. 
Furthermore, domain experts may also analyse what factors more significantly affect ML 
performance from the confirmation of ML predictions. Such information can be used as 
feedback for the ML pipeline to improve ML models. For example, using feedback to 
choose more meaningful features and modulate parameters for ML models. 
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Figure 10 Diagram of the use of adaptive measurable decision-making in an application  
(see online version for colours) 

 

11 Discussions 

We presented a workflow of how a practical problem was wrapped as an ML framework. 
We used water pipe failure prediction as a successful example to show how to make ML 
techniques useable in solving practical problems. 

Regarding our proposed workflow, the interaction with the ML system can be 
modelled as an ‘explanatory debugging’ perspective as illustrated in Figure 11. From this 
perspective, in order to make ML transparent and useable to end users, ML results need 
to be explained to end users based on both domain knowledge and ML theories to let end 
users understand and trust ML results. End users then make decisions based on the 
explanation. From checking of decision-making results, end users give feedback to the 
interaction loop to control the further analysis process such as refining data features or 
changing ML parameters. Explanation and Feedback play significant roles in this loop to 
make ML analysis more effective. 

Types of corrective feedback end users would like to give to ML systems include 
(Stumpf et al., 2007): reweighting features, creating new features (such as by combining 
features or creating features based on relational information), changes to algorithms. 
Domain knowledge can also be encoded into the feedback in order to improve ML 
models. Experiments found that feature reweighting was difficult for end users because 
of its insensitivity to changes. User co-training framework is another feedback approach 
which treats user’s feedback as if it were a second classifier (Stumpf et al., 2009). Feature 
rather than instance labelling shows promising results for user feedback in locally-
weighted logistic regression (Wong et al., 2011). To incorporate domain knowledge into 
the feedback pipeline, a module of converting domain knowledge into features usable by 
ML models is necessary. 

In our case study, we made explanations of ML system by revealing internal states 
interactively to users in order to improve easiness of understanding the data analysis 
process, make real-time status update more meaningful, and make ML results more 
convincing. However, further research is expected to explain ML results meaningfully in 
order to help domain experts make decisions confidently. Furthermore, feedback in the 
interaction loop needs to be investigated by considering application background. For 
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example, it is still challenging that what kind of information is useful as feedback from 
both end users and ML systems for improving effectiveness of ML processes. Therefore, 
domain experts and ML developers need to collaborate closely to analyse feedback for 
effective controlling of ML systems. 

In summary, from the case study, it was concluded that in order to phrase a practical 
problem into an ML framework, developers of ML techniques need to start with the 
cooperation with domain experts closely to understand the problems to be investigated. 
This affects ML experts’ decisions such as what data features to be extracted and what 
kind of ML models to be used in data analyses. ML results also need to be explained 
meaningfully before decision making. The feedback based on decision action results is 
also significant for improving effectiveness of ML models. This case study also 
demonstrated that an applicable ML analysis process is not a completely automatic 
process but an interactive pipeline in which domain knowledge and feedback from end 
users make the ML analysis more understandable and controllable. 

Figure 11 An ‘explanatory debugging’ perspective of end user interaction with an ML system  
(see online version for colours) 

 

12 Conclusions and future work  

This paper proposed a workflow of phrasing practical problems as an ML framework.  
We used water pipe failure prediction as a case study to show the steps of wrapping 
practical problems into various stages of an ML pipeline. The workflow showed that 
applying ML to a practical problem such as water pipe failure prediction can be divided 
into various steps: obtain domain data, interview with domain experts, clean/pre-process 
and preview original domain data, extract ML features, set up ML models, explain ML 
results and make decisions, as well as make feedback to the system based on decision 
making. Domain experts and ML developers need to cooperate closely in order to make 
this workflow more effective. 

Our future work will focus more on the explanation of ML results and setting up 
feedback to the ML analysis process. The challenges for the explanation of ML results lie 
in the selection of objects to be explained and methods to be used for the explanation. 
The explanation of ML results has close relations with various fields, such as human-
computer interaction, domain knowledge, and ML theories. We will focus on the analysis 
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of how these different aspects contribute to the explanation of ML results in order to 
make ML process understandable. As a result, end users trust ML results and make 
domain decisions based on ML results. Furthermore, in practice, ML analysis is an 
interactive process. Therefore, feedback in the analysis pipeline can help to improve 
effectiveness of ML analysis. However, it is challenging to set up an effective feedback 
mechanism to refine the ML analysis process. The main questions lie in what data are 
used as feedback and how to combine feedback effectively into the interaction loop. 
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