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Abstract. Rapid increase of data in different fields has been resulting in wide
applications of Machine Learning (ML) based intelligent systems in predictive
decision making scenarios. Unfortunately, these systems appear like a
‘black-box’ to users due to their complex working mechanisms and therefore
significantly affect the user’s trust in human-machine interactions. This is partly
due to the tightly coupled uncertainty inherent in the ML models that underlie
the predictive decision making recommendations. Furthermore, when such
analytics-driven intelligent systems are used in modern complex high-risk
domains (such as aviation) - user decisions, in addition to trust, are also influ-
enced by higher levels of cognitive load. This paper investigates effects of
uncertainty and cognitive load on user trust in predictive decision making in
order to design effective user interfaces for such ML-based intelligent systems.
Our user study of 42 subjects in a repeated factorial design experiment found
that both uncertainty types (risk and ambiguity) and cognitive workload levels
affected user trust in predictive decision making. Uncertainty presentation leads
to increased trust but only under low cognitive load conditions when users had
sufficient cognitive resources to process the information. Presentation of
uncertainty under high load conditions (when cognitive resources were short in
supply) leads to a decrease of trust in the system and its recommendations.
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1 Introduction

Trust has been found to be a critical factor driving human behavior in human-machine
interactions with autonomous systems [1] and more recently in modern complex
high-risk domains such as aviation and military command and control [2]. It is also one
of the most important factors in management and organizational behavior for all per-
sonal and business decision making as well as for efficiency and task performance [3,
4]. Trust is influenced by the types and format of information received by humans, their
individual approaches to develop and determine trust, and aspects such as system
capability and reliability [5].

Various definitions of trust have been used. One of the most widely cited definition
of trust is from Lee and See [6], which defines trust as “the attitude that an agent will
help achieve an individual’s goals in a situation characterized by uncertainty and
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vulnerability”. This definition shows that uncertainty is tightly coupled to trust.
Uncertainty indicates it is impossible to determine whether the information available is
true or not. There are many variants of uncertainty. The term could refer to statistical
variability, noise in the information, nondeterministic relationship between action and
consequences, or the psychological reaction to difficult problems. In human-machine
interactions, uncertainty often plays an important role in hindering the sense-making
process and conducting tasks: on the machine side, uncertainty builds up from the
system itself; on the human side, these uncertainties often result in “lack of knowledge
or trust” or “over-trust”. Such human’s biased interpretation can be partially resolved if
we can make uncertainty transparent to users. Furthermore, system transparency is
regarded as one vital aspect in maintaining human’s trust in and reliance on autono-
mous systems [7, 8]. A user might be risking too much by completely ignoring
uncertainties and having complete faith in autonomous systems. On the other hand,
trivializing autonomous systems or having high uncertainty perception on autonomous
systems could possibly dismiss the incredible potential of autonomous systems.
Adobor [9] showed that a certain amount of uncertainty is necessary for trust to
emerge. Beyond that threshold, however, increase in uncertainty can lead to a reduction
in trust. This midrange proposition suggests that there may be an optimal balance
between uncertainty and trust.

Moreover, Parasuraman et al. [10] showed that human cognition constructs such as
Cognitive Load (CL) and trust are often invoked in considerations of function allo-
cation and the design of automated systems. For example, in task situations of modern
complex high-risk domains, users often need to make decisions in limited time.
Therefore, they often make decisions under high cognitive load besides trust issues in
such task situations. It was found that a higher cognitive load worsens the situation in
relation to trust building [11]. However, it is still not clear how trust varies under both
high cognitive load and various uncertainty conditions.

Next we look at decision making, which is now an important research topic in HCI
with the fast growing use of intelligent systems [12]. Rapidly increasing data in fields
such as finance, infrastructure and society has motivated users to try integrating “Big
Data” and advanced analytics into business operations - in order to become more
analytics-driven in their decision making. Much of machine learning (ML) research is
inspired by such expectations. As a result, we continuously find ourselves coming
across ML-based appealing viewgraphs and other predictions that seem to work (or
have worked) surprisingly well in practical scenarios (e.g. AlphaGO’s beating with
professional GO players in 2016 and 2017). So far these machine learning success
stories originate from ML technical experts or computing professionals (e.g. Google
DeepMind). For many of non-ML users, ML-based predictive analytics software is like
a “black box”, to which they simply provide their source data and (after selecting some
menu options on screen) colorful viewgraphs and/or recommendations are displayed as
output. The “black box” approach has obvious drawbacks: it is difficult for the user to
understand the complicated ML models [13, 14]. It is neither clear nor well understood
that how trustworthy is this output, or how uncertainties are handled by underlying
algorithmic procedures. As a result, the user is more or less unconfident in the ML
model output when making decisions based on the ML model output and thus also
unconfident in the ML models themselves.
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From this perspective, Winkler [15] emphasized the importance of communicating
uncertainties in predictions (as imprecision and uncertainty are unavoidable in pre-
dictive analytics). He believed that the consideration of uncertainty is greatly necessary
in making rational decisions. It was also found that the presentation of automation
uncertainty information helped the automation system receive higher trust ratings and
increase acceptance of the system [16]. This display might improve the acceptance of
fallible systems and further enhances human–automation cooperation. However, it
remains unclear whether different types of uncertainty (e.g. risk and ambiguity) affect
trust building, and if yes how they affect trust building, especially in predictive decision
making. Here risk refers to situations with a known distribution of possible outcomes,
and ambiguity is the situation where outcomes have unknown probabilities.

This paper aims to investigate the effects of uncertainty on user trust under various
cognitive load levels in predictive decision making. Two uncertainty types of risk and
ambiguity are presented with predictive model results in a decision making scenario.
This follows the user method and approach to design cognitive systems, as reviewed by
Candello [17], and used in [18]. This user study was deployed as a simulation (derived
from the case study) of water pipe failure history analysis for future pipe failure
prediction. It shows that both uncertainty presentation and cognitive load levels affect
user trust in predictive decision making. The investigation results can be used to design
effective user interfaces for ML-based intelligent systems and improve the acceptability
of ML techniques by users.

2 Related Work

The research in human-machine trust and similar cognitive engineering constructs has a
rich history [10]. Several of the efforts in this area can be traced back to Rouse’s [19]
ideas about adaptive aiding, that later, among other things evolved into more advanced
HCI techniques. Also that psychophysiology was proposed for adaptive automation
[20] and then trust and self-confidence argued into adaptive automation [21].

Winkler [15] demonstrated, with the help of several effective examples (from
different fields), that probabilities are needed to understand the risk associated with
potential decisions as well as to determine measures such as expected payoffs and
expected utilities. LeClerc and Joslyn [22] successfully demonstrated that adding a
probabilistic uncertainty estimate in public weather forecasts improved both decision
quality and compliance (to evacuation instructions in cases of severe weather threats).
Uggirala et al. [23] studied humans using systems that include uncertainties by having
the users rate their trust at each level through questionnaires. Their study showed that
trust relates to competence and an inverse relation to uncertainty, meaning that an
increase in uncertainty decreases trust in the systems.

Allen et al. [24] investigated the effects of communicating uncertainty information
with users using different representations on cognitive tasks. Uncertainty information is
typically presented to users visually, most commonly in graphical format [24, 25].
Edwards et al. [26] compared different graphical methods from presenting quantitative
uncertainty in decision making tasks. The representation of uncertainty can have sig-
nificant impact on human performance. It was shown that when the representation of
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uncertainty for a spatial task better matches the expert’s preferred representation of the
problem even a non-expert can show expert-like performance [27]. This is actually a
very good motivation for trying to figure out the preferred representation of uncertainty
by different user groups.

Decision making under uncertainty is widely investigated in decision theory [28],
where uncertainty is usually considered as probabilities in utility functions. de Visser
and Parasuraman [29] conducted two experiments to examine the effects of automation
reliability and adaptive automation on human-system performance with different levels
of task load by using a high-fidelity multi-UV (uninhabited vehicles) simulation
involving both air and ground vehicles. User trust and self-confidence were higher and
workload was lower for adaptive automation compared with the other conditions. It
was found that human-robot teams can benefit from imperfect static automation even in
high task load conditions and that adaptive automation can provide additional benefits
in trust and workload.

However, little research has been done on the effects of uncertainty, especially
different types of uncertainty such as risk and ambiguity uncertainty, on user trust in
predictive decision making under various cognitive load levels. With the use of a case
study of predictive decision making for the water pipe failure budget planning, this
paper investigates user trust changes under variations of both uncertainty types and
cognitive load levels. Two types of uncertainty presentations (risk and ambiguous) and
four cognitive load levels are introduced in the study to learn their effects on user trust
in predictive decision making.

3 Experiment

3.1 Experiment Data

This research used water pipe failure prediction as a case study for predictive decision
making (replicated in lab environment). Water supply networks constitute one of the
most crucial and valuable urban assets. The combination of growing populations and
aging pipe networks requires water utilities to develop advanced risk management
strategies in order to maintain their distribution systems in a financially viable way
[30]. Pipes are characterized by different attributes, referred to as features, such as laid
year, material, diameter size, etc. If pipe failure historical data is provided, future water
pipe failure rate is predictable with respect to the inspected length of the water pipe
network [30]. Such models are used by utility companies for budget planning and pipe
maintenance. However, different models with various uncertainty conditions may be
achievable resulting in different possible budget plans. The experiment is then set up to
determine what uncertainty conditions may influence the user’s trust during the deci-
sion process. The prediction models were simulated following the models such as
Weibull and Hierarchical Beta Process (HBP) [30].
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3.2 Experimental Data

In this study, models are simulated and based on different pipe features (e.g. size or laid
year). The model performance curve was presented to let the participants evaluate
different models. The model performance is the functional relationship between the
inspected length of the network and the percentage of failures detected by the model.
Figure 1 shows the performances of two sample models, where the “blue model”
outperforms the “red model”, because the former detects more failures than the latter
for a given pipe length.

ML models are usually imperfect abstractions of reality. As a result, imprecision
can occur in the prediction through model uncertainty. Model uncertainty here refers to
an interval within which the true value of a measured quantity would lie. For example,
in Fig. 2(a), in order to inspect 20% of the pipes in length, the uncertainty interval of
the failure rate is 46%; 60%½ � for the blue model, and about 15%; 25%½ � for the red
model: the red model is said to have less uncertainty in prediction than the blue model
because the red model has smaller uncertainty interval than the blue model.

Model uncertainty usually spans as a band in the model performance diagram as
shown in Fig. 2. By considering model uncertainty, the relationship between two
models may have two cases as shown in Fig. 2: non-overlapping models (see Fig. 2a),
and overlapping models (see Fig. 2b). In Fig. 2b, the interval of the model with lower
uncertainty is subsumed in the interval of the model with higher uncertainty, whereas in
Fig. 2a, the two bands are disjoint.

Fig. 1. Performance curves of ML models. (Color figure online)
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3.3 Task Design

According to the water pipe failure prediction framework, we investigated the decisions
made by users under varied conditions. Each user was asked to make a budget plan, i.e.
a budget in terms of network length to be inspected, using the failure prediction models
learned from the historical pipe failure records. Two ML models were provided for
each estimation task. Participants were required to make decisions by selecting one of
two presented ML models and then making a budget estimate based on the selected ML
model. The budget estimate needs to meet the following requirements:

• To inspect as short length of pipes as possible (low cost);
• To be as precise in budget estimate as possible (higher accuracy would reflect

greater confidence in estimation).

In this study, a module named Automatic Predictive Assistant (APA) is introduced
to the user as a new module ‘under testing’ phase. The APA is a simulated module
which reads in the information provided by the ML models, and then recommends a
typical decision (of average accuracy) for the participant. Users can choose to trust,
modify or totally ignore the recommendations of APA. The participant needs to
evaluate whether she trusts the estimation recommended by the APA. If she does not
trust the APA, she is asked to provide her own estimation. Figure 3 shows the
screenshot of a task performed in the study.

The actions a participant needed to do during a task session include answering
questions to validate understanding of machine learning performance and uncertainty,
and to validate cognitive load levels introduced, as well as making decisions according
to information presented. In summary, each task is divided into following major steps:

Fig. 2. Predictive models with uncertainty: (a) non-overlapping models, and (b) overlapping
models. (Color figure online)
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(1) The participant is firstly asked to study the ML performance diagram (in the
middle of the screenshot in Fig. 3) and answer questions on model performance
and uncertainty to validate her understanding of the information presented.

(2) Next, the APA recommendations (at the right side of the screenshot in Fig. 3) are
displayed and again the user understanding validated.

(3) Finally, the participant is required to estimate the budget by selecting an ML
model and its estimation accuracy. If he/she does not trust the recommendations
from the APA, he/she is required to provide his/her own estimations (at the left
side of the screenshot in Fig. 3) based on the ML performance displayed at the
first step. Subjective trust ratings are obtained immediately after this step.

Participants were encouraged to reach the best budget estimates they could as quick
as possible.

In this study, cognitive load was introduced by asking participants to remember a
random number digit sequence for the duration of task time and reciting it after the task.
This dual-task load inducing technique is quite popular in decision making scenarios
[31]. The cognitive load level was determined based on the number of digits being
remembered. Four cognitive load levels were applied in this study – from low to high,
the number of random digits to be remembered ranged from three, five, seven and nine.
Three-digit number is for lowest load condition and nine-digit is for the highest load.

There were three different uncertainty visualizations (no uncertainty,
non-overlapping uncertainty, and overlapping uncertainty). Each condition was

Fig. 3. Screenshot of a task performed in the study. (Color figure online)
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performed under four different cognitive load levels. Each task was performed for three
rounds. All together 36 estimation tasks (3 uncertainty conditions � 4 cognitive load
levels � 3 rounds) were conducted by each subject. Three additional training tasks
were also conducted by each subject before the formal tasks. The order of tasks was
randomized during the experiment to avoid any bias. Slides-based instructions on the
concepts of predictive models and uncertainty as well as predictive decision making
were presented to each participant before the task time.

3.4 Participants and Apparatus

Forty-two participants were recruited from three groups with different background,
with the ages ranging from 20 to 57 years: Fourteen participants were ML researchers
(experts in ML or data mining research), nineteen were non-ML researchers (partici-
pants who were researchers but not in ML or data mining), and nine administrative
staff. These three user groups constituted the majority of the users for this particular
type of predictive decision making scenario we considered. All were requested to make
predictive decisions (using historical data visualized on screen) about the optimal
length of pipe (thus budget estimation) to be checked in order to minimize water pipe
failures. Information was presented on a 21-inch Dell widescreen monitor. Figure 3
presents a screenshot of a task performed in the study.

3.5 Data Collection

After each decision making task, participants were asked to rate their trust in APA
recommendations and also confidence in their own decisions (using a 9-point Likert
scale where 1 = least trust, and 9 = most trust). Besides trust subjective ratings, cog-
nitive load rankings for each task from subjects were also collected using a 9-point
Likert scale (1 = least mental effort, and 9 = most mental effort) for load validation
purposes.

4 Results

Figures 4 and 5 depict the summary visualization of trust measured via subjective
responses of all 42 subjects. Trust values were normalized with respect to each subject
to minimize individual differences in rating behavior. Since we had more than two
dependent samples, we first performed Friedman test and then followed it up with
post-hoc analysis using Wilcoxon signed-rank tests (with a Bonferroni correction) to
analyze differences in participant responses of trust for various conditions.

Trust and Uncertainty: Figure 4 shows normalized trust values over the uncertainty
treatments. Control task had only point prediction lines (refer to Fig. 1) and no
uncertainty was presented. Risk uncertainty was presented by models with
non-overlapping uncertainty (see Fig. 2a) and ambiguity by overlapping uncertainty
models (see Fig. 2b).
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When participants experienced uncertainty type ambiguity (rightmost group of
columns in Fig. 4), Friedman test for cognitive load level conditions showed a statis-
tically significant difference in trust among four CL levels, v2ð3Þ ¼ 12:363, p < .006.
Then post-hoc Wilcoxon tests (with a Bonferroni correction under a significance level
set at p < .013) was applied to find pair-wise differences between levels in trust. The
adjusted significance alpha level of .013 was calculated by dividing the original alpha of
.05 by 4, based on the fact that we had four load level conditions to test.

The post-hoc tests found that for uncertainty condition of ambiguity, participants
had significantly lower trust under high cognitive load (CL4), with p < .001, compared
to that of low load (CL1). More details of this result and its implications for subject
groups appear in discussion ahead.

Trust and Cognitive Load: Figure 5 shows normalized trust values over cognitive
load levels. Here we are interested only in the extreme load levels administered, namely
CL1 (the lowest) and CL4 (the highest), as they are the most relevant for automated
cognitive load management [32]. Friedman’s test of cognitive load level conditions of
the lowest (CL1) and highest (CL4) both gave statistically significant differences in
trust among three uncertainty conditions, v2ð2Þ ¼ 11:227, p < .004 and
v2ð2Þ ¼ 10:356, p < .006 respectively. Then post-hoc Wilcoxon tests (with a Bon-
ferroni correction under a significance level set at p < .017) was applied to find
pair-wise differences between uncertainty conditions. The adjusted significance alpha

Fig. 4. Trust over uncertainty presented; control (No Uncertainty), risk (Non-Overlapping
Uncertainty) and ambiguity (Overlapping Uncertainty).
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level of .017 was calculated by dividing the original alpha of .05 by 3, based on the fact
that we had three uncertainty conditions to test.

The post-hoc tests found that for low cognitive load condition (CL1), trust in the
condition of ambiguity was significantly higher (p < .006) than that of risk condition
(Fig. 5, leftmost group of three columns). Whereas, for high cognitive load (CL4)
condition, trust in risk condition was significantly lower (p < .003) than control con-
dition. More details of this result and its implications for subject groups appear in
discussion ahead.

5 Discussion

As discussed in earlier sections, trust is a challenging concept to study and investigate
in, therefore, we opted to study human-machine trust in a specialized predictive
decision making scenario. Predictive decision making support and automated aids have
become quite popular with the advent of new machine learning based intelligent
applications. Now that machines are becoming more intelligent – human-computer
interaction must also evolve accordingly. Only by working together as a trusted team
can humans and machines improve efficiency and productivity.

Trust and Uncertainty: Generally, in an automated predictive decision making sce-
nario, humans are required to make future oriented decisions based on the information or
recommendation presented on the screen by a machine learning (and data crunching)

Fig. 5. Trust over cognitive load levels.
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model/algorithm that mostly works on historical data behind the scenes (appearing like a
black box to user). Since these decisions are about the future, there can be no absolutely
correct answers - but only better and more appropriate ones based on a more precise
understanding of the underlying data presented during the decision making process.
Therefore, better presentation and adequate communication of uncertainty inherent in
the underlying ML process can improve the trust of the user in the system and lead to
better and effective decisions. In our case, we experimented with visualizing and
communicating two forms of uncertainty, namely, risk and ambiguity. Risk is a form of
uncertainty where all probabilities related to outcomes are known. The user, with the
help of these known probabilities, can be expected to make better and well-informed
decisions quickly. Such risk type uncertainty was represented by non-overlapping
models (see Fig. 2a). The other type of uncertainty we experimented with was ambi-
guity, which was represented by overlapping models (see Fig. 2b) and where proba-
bilities of outcomes were either unknown or not clearly stated. The control condition
was the case where models were presented without any uncertainty component.

Looking at the overall results (Fig. 4), no clear trends can be observed for risk type
uncertainty condition, but a clear trend of falling trust can be seen for uncertainty of
type ambiguity as cognitive load level increases. It can be said that under low cognitive
load (implying greater availability of cognitive resources), users felt more confident
analyzing and interpreting the ambiguity type of uncertainty and therefore appear to
trust the judgement/recommendation of the automated predictive assistant as it made
more sense to them. However, under high cognitive load, the users might find them-
selves almost at the edge of their working memory capacity. Limited cognitive
resources would result in lesser understanding of the ambiguity type of visual. This in
turn is indicated by reduced trust in the system and its recommendations. This phe-
nomenon seems to be in line with findings that the better the person understands the
system and it’s working the greater the person is willing to trust it [27].

Further drilling down deeper into this trust (over ambiguity type uncertainty)
phenomenon into subject groups (administration, machine learning experts and
non-machine learning experts) also leads to an interesting insight (see Fig. 6). Clearly
the level of trust for ambiguity type uncertainty presentation appears to drop for all
subject groups as cognitive load increases. High cognitive load appears to impact the
trust same for all administrative staff and experts (whether they be machine learning or
non-machine learning).

Important lessons here for improved trust can be to either avoid ambiguity type of
uncertainty representation altogether or present it only when condition of low cognitive
load. Also another direction could be to look for alternate ways of visualizing ambi-
guity type of uncertainty.

Trust and Cognitive Load: It is well known that human performance can be sig-
nificantly affected by high cognitive or mental workload [33]. Cognitive workload is
the load on working memory that the user experiences when engaged in a cognitive
problem. In our case, the trust in decision making is influenced by a cognitive phase
where user tries to make sense of the model data/visuals presented. Since the decision
making task was soft time bound, the user must make efficient use of available cog-
nitive resources in order to complete the task. Here we look at the two extreme
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conditions where most cognitive resources were expected to be available (CL1) and
where least cognitive resources were expected to be available (CL4). As stated earlier
in the results section, Friedman test for both these extreme conditions (CL1 & CL4)
turned out to be significant.

In low load condition (CL1), trust for ambiguity type uncertainty was significantly
higher than risk type uncertainty (see leftmost group of columns in Fig. 5). The trend
seems to be the same for all subject subgroups (see Fig. 7). Trust, under low load
conditions, seems to be consistently higher for all groups whenever uncertainty of
ambiguity type is presented. However, on further testing, only non-ML group (right-
most group of columns in Fig. 7) yielded significantly (p < .006) higher trust level
uncertainty types ambiguity to that of risk. A limitation here could be the lower number
of subjects in groups other than non-ML experts. These findings go on to support the
idea discussed earlier that uncertainty of type ambiguity can be readily processed by
users only under low cognitive load conditions.

Likewise in high load condition (CL4), trust for risk type uncertainty was signifi-
cantly lower than control condition of no uncertainty presentation (see rightmost group
of columns in Fig. 5). The trend seems to be similar for all subject subgroups (see
Fig. 8). Trust, for both uncertainty conditions, seems to be consistently lower for all
groups with respect to control condition. On further testing, only non-ML group
(rightmost group of columns in Fig. 8) yielded significantly (p < .003) lower trust level
uncertainty type risk to that of control. A limitation here could be the lower number of
subjects in other groups than non-machine learning experts. Of the total 42, there were 9
administrative staff, 14 machine learning experts and 19 non-machine learning experts.

Fig. 6. Trust for ambiguity type uncertainty.
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These findings go on to support the idea that people trust less what they have not
had time to understand. Visuals presented in control condition are straightforward with
no complication – however, they are simple, but only at the cost of hiding away the
uncertainty inherent in the ML models. Once attempts are made to communicate the
uncertainty – the trust seems to increase from control to risk and ambiguity uncertainty
only under conditions of low cognitive load (see Fig. 7) and decrease under conditions
of high cognitive load (see Fig. 8).

User Groups: The three user groups of administrative staff, ML experts and Non-ML
experts constitute the majority of the users of such predictive decision making interfaces
[18]. Of the people involved in predictive decision making, administrative staff is
expected to be least knowledgeable of statistical probability and its representations.
Non-ML experts may or may not be knowledgeable of statistical probability but they
can be expected to be familiar with model representations. Finally the ML experts are
expected to be the most knowledgeable of statistical probability and also of uncertainty
inherent in ML models. In our case, from the total of 42, there were 9 administrative
staff, 14 machine learning experts and 19 non-machine learning experts. The adminis-
trative group by itself is too small in number for any meaningful inference. ML-experts
were reasonably good in number but nothing significant would be inferred. Only the
Non-ML group appears to significant results in certain conditions as discussed above.

Overall, we can say that uncertainty presentation can lead to increased trust but
only under low cognitive load conditions when user has sufficient cognitive resources
to process the information. Presentation of uncertainty under high load conditions,

Fig. 7. Trust over subject groups (Low CL).
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when cognitive resources are short in supply can lead to lowering of trust in the system
and its recommendations.

In order to incorporate these findings in HCI and real-world applications, the user
interface for an ML-based intelligent system needs to include the following
components:

• Components which show uncertainty of ML models. This could help users increase
trust in their decisions;

• Feedback on user trust and load levels that allow users interfaces to adapt
accordingly.

These components may be incorporated into the framework of adaptive measure-
able decision making proposed in [34], thereby introducing trust levels into an adaptive
decision making process and allowing for efficient and informed decisions. Therefore,
besides decision quality as demonstrated in [35], the revealing of user trust levels in
predictive decision making also benefits the evaluation of ML models. From this
perspective, this study made “black-box” ML models transparent through revealing
user responses to ML models, but not directly explain how ML algorithms process data
to get outputs with visualizations or feature contributions [36–38], where domain users
still have difficulty to understand those complex visualizations and abstract numbers.
The revealing of user trust in a predictive decision making scenario is more meaningful
for both ML researchers and domain experts, and therefore help improve the accep-
tance of ML solutions by users.

Fig. 8. Trust over subject groups (High CL).
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In summary, this study showed that uncertainty and cognitive load played signif-
icant roles in affecting user trust in predictive decision making. Furthermore, various
uncertainty types had different effects on user trust perceptions. These findings have at
least two benefits in real-world applications: (1) to design intelligent user interface of
predictive decision related applications in HCI. The user interface, which shows user
trust in decision making in real-time, would help users make informed decisions
effectively; (2) to evaluate ML models in ML research areas by measuring what is the
user trust level in decision making based on ML output.

6 Conclusions and Future Work

This paper investigated the effects of uncertainty of ML models and cognitive load on
user trust in predictive decision making in order to design effective user interfaces for
ML-based intelligent systems. A user study found that both uncertainty types, as well
as the cognitive load levels affected user trust in decision making. Furthermore, various
user groups showed different trust perceptions under both uncertainty and cognitive
load conditions.

Our future work will focus on analyzing physiological signals, such as Galvanic
Skin Response (GSR) and Blood Volume Pulse (BVP) signals, as well as behavioral
signals (mouse movement) of participants for indexing user trust levels during
ML-based decision making. The relationship between the trust and the task perfor-
mance will also be analyzed. Our ultimate goal is to set up a framework of measurable
trust in decision making in order to dynamically adjust trust levels in ML-based
intelligent systems.

Acknowledgements. Authors thank all volunteer participants for the experiment. This work was
supported in part by the Asian Office of Aerospace Research & Development (AOARD) under
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